Course Outline

Part 1 – Deep Learning and DNN Concepts

Introduction AI, Machine Learning & Deep Learning

  • History, basic concepts and usual applications of artificial intelligence far Of the fantasies carried by this domain
  • Collective Intelligence: aggregating knowledge shared by many virtual agents
  • Genetic algorithms: to evolve a population of virtual agents by selection
  • Usual Learning Machine: definition.
  • Types of tasks: supervised learning, unsupervised learning, reinforcement learning
  • Types of actions: classification, regression, clustering, density estimation, reduction of dimensionality
  • Examples of Machine Learning algorithms: Linear regression, Naive Bayes, Random Tree
  • Machine learning VS Deep Learning: problems on which Machine Learning remains Today the state of the art (Random Forests & XGBoosts)

Basic Concepts of a Neural Network (Application: multi-layer perceptron)

  • Reminder of mathematical bases.
  • Definition of a network of neurons: classical architecture, activation and
  • Weighting of previous activations, depth of a network
  • Definition of the learning of a network of neurons: functions of cost, back-propagation, Stochastic gradient descent, maximum likelihood.
  • Modeling of a neural network: modeling input and output data according to The type of problem (regression, classification ...). Curse of dimensionality.
  • Distinction between Multi-feature data and signal. Choice of a cost function according to the data.
  • Approximation of a function by a network of neurons: presentation and examples
  • Approximation of a distribution by a network of neurons: presentation and examples
  • Data Augmentation: how to balance a dataset
  • Generalization of the results of a network of neurons.
  • Initialization and regularization of a neural network: L1 / L2 regularization, Batch Normalization
  • Optimization and convergence algorithms

Standard ML / DL Tools

A simple presentation with advantages, disadvantages, position in the ecosystem and use is planned.

  • Data management tools: Apache Spark, Apache Hadoop Tools
  • Machine Learning: Numpy, Scipy, Sci-kit
  • DL high level frameworks: PyTorch, Keras, Lasagne
  • Low level DL frameworks: Theano, Torch, Caffe, Tensorflow

Convolutional Neural Networks (CNN).

  • Presentation of the CNNs: fundamental principles and applications
  • Basic operation of a CNN: convolutional layer, use of a kernel,
  • Padding & stride, feature map generation, pooling layers. Extensions 1D, 2D and 3D.
  • Presentation of the different CNN architectures that brought the state of the art in classification
  • Images: LeNet, VGG Networks, Network in Network, Inception, Resnet. Presentation of Innovations brought about by each architecture and their more global applications (Convolution 1x1 or residual connections)
  • Use of an attention model.
  • Application to a common classification case (text or image)
  • CNNs for generation: super-resolution, pixel-to-pixel segmentation. Presentation of
  • Main strategies for increasing feature maps for image generation.

Recurrent Neural Networks (RNN).

  • Presentation of RNNs: fundamental principles and applications.
  • Basic operation of the RNN: hidden activation, back propagation through time, Unfolded version.
  • Evolutions towards the Gated Recurrent Units (GRUs) and LSTM (Long Short Term Memory).
  • Presentation of the different states and the evolutions brought by these architectures
  • Convergence and vanising gradient problems
  • Classical architectures: Prediction of a temporal series, classification ...
  • RNN Encoder Decoder type architecture. Use of an attention model.
  • NLP applications: word / character encoding, translation.
  • Video Applications: prediction of the next generated image of a video sequence.

Generational models: Variational AutoEncoder (VAE) and Generative Adversarial Networks (GAN).

  • Presentation of the generational models, link with the CNNs
  • Auto-encoder: reduction of dimensionality and limited generation
  • Variational Auto-encoder: generational model and approximation of the distribution of a given. Definition and use of latent space. Reparameterization trick. Applications and Limits observed
  • Generative Adversarial Networks: Fundamentals.
  • Dual Network Architecture (Generator and discriminator) with alternate learning, cost functions available.
  • Convergence of a GAN and difficulties encountered.
  • Improved convergence: Wasserstein GAN, Began. Earth Moving Distance.
  • Applications for the generation of images or photographs, text generation, super-resolution.

Deep Reinforcement Learning.

  • Presentation of reinforcement learning: control of an agent in a defined environment
  • By a state and possible actions
  • Use of a neural network to approximate the state function
  • Deep Q Learning: experience replay, and application to the control of a video game.
  • Optimization of learning policy. On-policy && off-policy. Actor critic architecture. A3C.
  • Applications: control of a single video game or a digital system.

Part 2 – Theano for Deep Learning

Theano Basics

  • Introduction
  • Installation and Configuration

TheanoFunctions

  • inputs, outputs, updates, givens

Training and Optimization of a neural network using Theano

  • Neural Network Modeling
  • Logistic Regression
  • Hidden Layers
  • Training a network
  • Computing and Classification
  • Optimization
  • Log Loss

Testing the model

Part 3 – DNN using Tensorflow

TensorFlow Basics

  • Creation, Initializing, Saving, and Restoring TensorFlow variables
  • Feeding, Reading and Preloading TensorFlow Data
  • How to use TensorFlow infrastructure to train models at scale
  • Visualizing and Evaluating models with TensorBoard

TensorFlow Mechanics

  • Prepare the Data
  • Download
  • Inputs and Placeholders
  • Build the GraphS
    • Inference
    • Loss
    • Training
  • Train the Model
    • The Graph
    • The Session
    • Train Loop
  • Evaluate the Model
    • Build the Eval Graph
    • Eval Output

The Perceptron

  • Activation functions
  • The perceptron learning algorithm
  • Binary classification with the perceptron
  • Document classification with the perceptron
  • Limitations of the perceptron

From the Perceptron to Support Vector Machines

  • Kernels and the kernel trick
  • Maximum margin classification and support vectors

Artificial Neural Networks

  • Nonlinear decision boundaries
  • Feedforward and feedback artificial neural networks
  • Multilayer perceptrons
  • Minimizing the cost function
  • Forward propagation
  • Back propagation
  • Improving the way neural networks learn

Convolutional Neural Networks

  • Goals
  • Model Architecture
  • Principles
  • Code Organization
  • Launching and Training the Model
  • Evaluating a Model

Basic Introductions to be given to the below modules(Brief Introduction to be provided based on time availability):

Tensorflow - Advanced Usage

  • Threading and Queues
  • Distributed TensorFlow
  • Writing Documentation and Sharing your Model
  • Customizing Data Readers
  • Manipulating TensorFlow Model Files

TensorFlow Serving

  • Introduction
  • Basic Serving Tutorial
  • Advanced Serving Tutorial
  • Serving Inception Model Tutorial

Requirements

Background in physics, mathematics and programming. Involvment in image processing activities.

The delegates should have a prior understanding of machine learning concepts, and should have worked upon Python programming and libraries.

 35 Hours

Number of participants


Price per participant

Testimonials (5)

Upcoming Courses

Related Categories