План на курса
Основни сведения за програмата Excel
- Типове данни Excelа – Как Excel обработва дата и време
- Търсене на стойности в електронна таблица – Намери и отбележи
- Защита на електронни таблици
- Валидност на данните
- Създаване на редове данни
- Автокорекция
- Бързо попълване
- Преход към специално
- Поставяне специално
- Текст в колони
- Лента с бърз достъп
- Добри практики за създаване на таблици
- Клавишни комбинации
- Форматиране на клетки
- Условно форматиране
Създаване на формули
- Вмъкване на функции
- Редактиране на формули
- Логически функции
- Математически функции
- Търсещи функции
- Текстови функции
- Функции на дата и време
- Сумиране на съдържанието на клетки чрез бутон за автосумиране
- Добавяне на функции с използване на диалогов прозорец
- Оценка на формулата
- Определяне на местоположението на стойности
- Именуване на диапазон
- Модифициране на именувани диапазони
- Използване на именувани диапазони в формули
Създаване на кръстосана таблица
- Основни сведения за кръстосаните таблици
- Обзор на полетата за отчет на кръстосана таблица
Създаване на графики и кръстосани графики
- Създаване на кръстосани графики
- Промяна на тип график
Изисквания
Знание на система Windows, както и основните функции на програма Excel
Отзиви от потребители (7)
### Communication Between Teacher and UsThis section will guide you through the various communication channels available between students and teachers. We will cover the following:#### Email Communication- **Purpose:** Email is the primary method for formal communication.- **Usage:** Students can use email to ask questions, request meetings, or discuss assignments.- **Guidelines:** Ensure emails are professional and include a clear subject line and polite greeting.#### Classroom Discussions- **Purpose:** Facilitate in-class discussions to enhance learning.- **Usage:** Students can ask questions, share ideas, and engage in group activities.- **Guidelines:** Respect others' opinions and stay on topic.#### Office Hours- **Purpose:** Provide one-on-one support outside of class time.- **Usage:** Students can schedule appointments to discuss course material, assignments, or personal issues.- **Guidelines:** Be prepared with specific questions or topics to discuss.#### Online Forums- **Purpose:** Encourage peer-to-peer learning and collaboration.- **Usage:** Students can post questions, share resources, and participate in discussions.- **Guidelines:** Be respectful and constructive in your responses.#### Feedback Sessions- **Purpose:** Allow students to provide feedback on the course and teaching methods.- **Usage:** Students can participate in surveys or focus groups to share their thoughts.- **Guidelines:** Provide honest and constructive feedback.#### Virtual Meetings- **Purpose:** Conduct remote meetings using video conferencing tools.- **Usage:** Students can join virtual meetings for lectures, group projects, or one-on-one sessions.- **Guidelines:** Ensure a stable internet connection and a quiet environment.
Julia Hudziak - LKQ Polska Sp. z o. o.
Курс - Microsoft Office Excel - poziom średnio zaawansowany
Машинен превод
Взаимодействието на треньора с тренирантите
- NEVEON Romania
Курс - Microsoft Office Excel - intermediate level
Машинен превод
Много ми се харесваше стила на представяване за всеки модул, както и факта, че беше много ясно и лесно за разбиране от всички. :)
Denisa - NEVEON Romania
Курс - Microsoft Office Excel - intermediate level
Машинен превод
**Course Title:** Introduction to Data Science with Python**Course Duration:** 10 weeks**Course Description:**This course introduces the fundamental concepts and techniques of data science using Python. Participants will gain hands-on experience with essential data science tools and libraries, enabling them to analyze and interpret complex datasets.**Course Objectives:**By the end of this course, students will be able to:- Understand the basic principles of data science- Utilize Python for data manipulation and analysis- Work with popular data science libraries such as Pandas, NumPy, and Matplotlib- Perform exploratory data analysis and visualization- Build and evaluate predictive models using machine learning algorithms- Apply data science techniques to real-world problems**Prerequisites:**- Basic knowledge of Python programming- Familiarity with statistics and probability concepts- Access to a computer with Python and necessary libraries installed**Course Outline:****Week 1: Introduction to Data Science**- Definition and importance of data science- Overview of the data science workflow- Introduction to Python for data science**Week 2: Python for Data Science**- Review of Python basics- Essential Python libraries for data science- Data structures and operations in Python**Week 3: Data Manipulation with Pandas**- Introduction to Pandas library- DataFrames and Series- Data cleaning and preprocessing**Week 4: Data Visualization with Matplotlib and Seaborn**- Introduction to Matplotlib- Creating basic plots and charts- Advanced visualization techniques with Seaborn**Week 5: Exploratory Data Analysis (EDA)**- Techniques for exploratory data analysis- Statistical summary and data distribution- Identifying patterns and correlations**Week 6: Introduction to Machine Learning**- Overview of machine learning concepts- Supervised and unsupervised learning- Introduction to Scikit-learn library**Week 7: Supervised Learning Algorithms**- Linear regression- Logistic regression- Decision trees and random forests**Week 8: Unsupervised Learning Algorithms**- K-means clustering- Principal Component Analysis (PCA)- Dimensionality reduction techniques**Week 9: Model Evaluation and Selection**- Evaluating model performance- Cross-validation techniques- Selecting the best model**Week 10: Capstone Project**- Applying data science techniques to a real-world problem- Project presentation and discussion- Course review and final assessment**Assessment:**- Weekly assignments and quizzes: 40%- Midterm project: 30%- Final capstone project: 30%**Resources:**- Course materials and lecture notes- Recommended readings and online resources- Access to data science tools and software- Support from instructors and teaching assistants**Contact Information:**For any inquiries, please contact the course coordinator at datascience@university.edu or visit the course website at www.university.edu/datascience.
Marcin - Instytut Energetyki- Panstwowy Instytut Badawczy
Курс - Microsoft Office Excel - poziom średnio zaawansowany
Машинен превод
добър темп и много добри съвети
Kacper - Instytut Energetyki- Panstwowy Instytut Badawczy
Курс - Microsoft Office Excel - poziom średnio zaawansowany
Машинен превод
Много практически упражнения
Olena - Alfa Laval
Курс - Microsoft Office Excel - poziom średnio zaawansowany
Машинен превод
Темпото - идеално за мен, за да науча нови неща
Anna - Alfa Laval
Курс - Microsoft Office Excel - poziom średnio zaawansowany
Машинен превод