План на курса
Module 1: Introduction to AI for QA
- What is Artificial Intelligence?
- Machine Learning vs Deep Learning vs Rule-based Systems
- The evolution of software testing with AI
- Key benefits and challenges of AI in QA
Module 2: Data and ML Basics for Testers
- Understanding structured vs unstructured data
- Features, labels, and training datasets
- Supervised and unsupervised learning
- Intro to model evaluation (accuracy, precision, recall, etc.)
- Real-world QA datasets
Module 3: AI Use Cases in QA
- AI-powered test case generation
- Defect prediction using ML
- Test prioritization and risk-based testing
- Visual testing with computer vision
- Log analysis and anomaly detection
- Natural language processing (NLP) for test scripts
Module 4: AI Tools for QA
- Overview of AI-enabled QA platforms
- Using open-source libraries (e.g., Python, Scikit-learn, TensorFlow, Keras) for QA prototypes
- Introduction to LLMs in test automation
- Building a simple AI model to predict test failures
Module 5: Integrating AI into QA Workflows
- Evaluating AI-readiness of your QA processes
- Continuous integration and AI: how to embed intelligence into CI/CD pipelines
- Designing intelligent test suites
- Managing AI model drift and retraining cycles
- Ethical considerations in AI-powered testing
Module 6: Hands-on Labs and Capstone Project
- Lab 1: Automate test case generation using AI
- Lab 2: Build a defect prediction model using historical test data
- Lab 3: Use an LLM to review and optimize test scripts
- Capstone: End-to-end implementation of an AI-powered testing pipeline
Изисквания
Участващите се очаква да разполагат с:
- 2+ години опит в роли за тестване на софтуер/QA
- Знаемост с инструменти за автоматизиране на тестове (напр., Selenium, JUnit, Cypress)
- Основни познания в програмиране (предпочитано на Python или JavaScript)
- Опит с контрол на версии и инструменти за CI/CD (напр., Git, Jenkins)
- Няма необходимо предишен опит в AI/ML, но любопитство и готовност да експериментира са необходими
Oтзиви от потребители (5)
Метод на преподаване
Negritu - OMNIASIG VIENNA INSURANCE GROUP S.A.
Курс - SoapUI for API Testing
Машинен превод
Наслаждавах се на всичко, тъй като всичко е ново за мен и виждам добавената стойност, която може да придаде на работата ми.
Zareef - BMW South Africa
Курс - Tosca: Model-Based Testing for Complex Systems
Машинен превод
Включва много обща преглед на темата, която минава през всички предварителни знания по начин, подходящ за знанията на курса.
James Hurburgh - Queensland Police Service
Курс - SpecFlow: Implementing BDD for .NET
Машинен превод
Бяло лесно за разбиране и за прилагане.
Thomas Young - Canadian Food Inspection Agency
Курс - Robot Framework: Keyword Driven Acceptance Testing
Машинен превод
Количество практически упражнения.
Jakub Wasikowski - riskmethods sp. z o.o
Курс - API Testing with Postman
Машинен превод