План на курса
Introduction to AI Builder and Low-Code AI
- AI Builder capabilities and common scenarios
- Licensing, governance, and tenant-level considerations
- Overview of the Power Platform integrations (Power Apps, Power Automate, Dataverse)
OCR and Form Processing: Structured and Unstructured Documents
- Differences between structured templates and free-form documents
- Preparing training data: labeling fields, sample diversity, and quality guidelines
- Building an AI Builder form processing model and evaluating extraction accuracy
- Post-processing extracted data: validation, normalization, and error handling
- Hands-on lab: OCR extraction from mixed form types and integration into a processing flow
Prediction Models: Classification and Regression
- Problem framing: qualitative (classification) vs quantitative (regression) tasks
- Feature preparation and handling missing data within Power Platform workflows
- Training, testing, and interpreting model metrics (accuracy, precision, recall, RMSE)
- Model explainability and fairness considerations in business use cases
- Hands-on lab: build a custom prediction model for churn/score or numeric forecast
Integration with Power Apps and Power Automate
- Embedding AI Builder models into canvas and model-driven apps
- Creating automated flows to process extracted data and trigger business actions
- Design patterns for scalable, maintainable AI-driven apps
- Hands-on lab: end-to-end scenario — document upload, OCR, prediction, and workflow automation
Complementary Process Mining Concepts (Optional)
- How Process Mining helps discover, analyze and improve processes using event logs
- Using Process Mining outputs to inform model features and automate improvement loops
- Practical example: combine Process Mining insights with AI Builder to reduce manual exceptions
Production Considerations, Governance, and Monitoring
- Data governance, privacy, and compliance when using AI Builder on sensitive documents
- Model lifecycle: retraining, versioning, and performance monitoring
- Operationalizing models with alerts, dashboards, and human-in-the-loop validation
Summary and Next Steps
Изисквания
- Experience with Power Apps, Power Automate, or Power Platform administration
- Familiarity with data concepts, basic ML ideas, and model evaluation
- Comfort working with datasets, Excel/CSV exports, and basic data cleansing
Audience
- Power Platform developers and solution architects
- Data analysts and process owners seeking automation through AI
- Business automation leads focused on document processing and prediction use cases
Oтзиви от потребители (2)
Мислех, че обучителят беше наистина увлекателен и беше много бърз на крака, за да отговори на въпроси, които бяха свързани с нашата работа и наистина приспособи обучението към нашите нужди и отиде над и отвъд, за да ги посрещне. Не мога да препоръчам Шон достатъчно!
Tom King - Complete Coherence
Курс - Microsoft Power Platform Fundamentals
Машинен превод
Обожавам търпеливостта на Инструктора към всички, които го моляха да повтори нещо 4-5 пъти. Вярвам, че той има голямо знание по темата, но както е казано по-горе, не прекарахме достатъчно време върху нея. Освен това, беше добре, че беше ръководено обучение, където можахме да практикуваме в реално време това, което ни се преподава, но отново, бих искал да знаем повече за PowerApps, а не за SharePoint, защото съм достатъчно засегнат с това, и ако исках да науча повече, вероятно бих избрал обучение за SharePoint, а не за PowerApps.
Patrycja - EY GDS
Курс - Microsoft Flow/Power Automate
Машинен превод