План на курса
Foundations of MLOps on Kubernetes
- Core concepts of MLOps
- MLOps vs traditional DevOps
- Key challenges of ML lifecycle management
Containerizing ML Workloads
- Packaging models and training code
- Optimizing container images for ML
- Managing dependencies and reproducibility
CI/CD for Machine Learning
- Structuring ML repositories for automation
- Integrating testing and validation steps
- Triggering pipelines for retraining and updates
GitOps for Model Deployment
- GitOps principles and workflows
- Using Argo CD for model deployment
- Version control of models and configurations
Pipeline Orchestration on Kubernetes
- Building pipelines with Tekton
- Managing multi-step ML workflows
- Scheduling and resource management
Monitoring, Logging, and Rollback Strategies
- Tracking data drift and model performance
- Integrating alerting and observability
- Rollback and failover approaches
Automated Retraining and Continuous Improvement
- Designing feedback loops
- Automating scheduled retraining
- Integrating MLflow for tracking and experiment management
Advanced MLOps Architectures
- Multi-cluster and hybrid-cloud deployment models
- Scaling teams with shared infrastructure
- Security and compliance considerations
Summary and Next Steps
Изисквания
- An understanding of Kubernetes fundamentals
- Experience with machine learning workflows
- Knowledge of Git-based development
Audience
- ML engineers
- DevOps engineers
- ML platform teams
Отзиви от потребители (3)
той беше търпелив и разбра, че изоставаме
Albertina - REGNOLOGY ROMANIA S.R.L.
Курс - Deploying Kubernetes Applications with Helm
Машинен превод
Към екосистемата на машинно обучение спадат не само MLFlow, но и Optuna, hyperops, docker, docker-compose
Guillaume GAUTIER - OLEA MEDICAL
Курс - MLflow
Машинен превод
Къснах се да участвам в тренинг Kubeflow, който беше проведен онлайн. Това обучение ми позволи да утвърдя знанията си за AWS услуги, K8s, всички devOps инструменти около Kubeflow, които са необходимите основи, за да се справя правилно с темата. Исках да благодаря Малявски Марчин за търпеливостта и професионализма му при обучението и съветите за най-добрите практики. Малявски подходи към темата от различни ъгли, различни инструменти за развертане Ansible, EKS kubectl, Terraform. Сега съм напълно убеден, че отивам в правилната област на приложение.
Guillaume Gautier - OLEA MEDICAL | Improved diagnosis for life TM
Курс - Kubeflow
Машинен превод