План на курса
Въведение в приложното Machine Learning
- Статистическо обучение срещу машинно обучение Итерация и оценка Компромис от отклонение-вариация
Машинно обучение с Scala
- Избор на библиотеки Допълнителни инструменти
Регресия
- Линейна регресия. Обобщения и упражнения за нелинейност
Класификация
- Bayesian refresher Наивен Bayes Логистична регресия K-най-близки съседи Упражнения
Кръстосано валидиране и повторно вземане на проби
- Подходи за кръстосано валидиране Bootstrap Упражнения
Учене без надзор
- Примери за групиране на K-означава Предизвикателства на неконтролираното учене и извън K-означава
Изисквания
Владеене на език за програмиране Java/Scala. Препоръчва се основно познаване на статистиката и линейната алгебра.
Oтзиви от потребители (2)
Към екосистемата на машинно обучение спадат не само MLFlow, но и Optuna, hyperops, docker, docker-compose
Guillaume GAUTIER - OLEA MEDICAL
Курс - MLflow
Машинен превод
Къснах се да участвам в тренинг Kubeflow, който беше проведен онлайн. Това обучение ми позволи да утвърдя знанията си за AWS услуги, K8s, всички devOps инструменти около Kubeflow, които са необходимите основи, за да се справя правилно с темата. Исках да благодаря Малявски Марчин за търпеливостта и професионализма му при обучението и съветите за най-добрите практики. Малявски подходи към темата от различни ъгли, различни инструменти за развертане Ansible, EKS kubectl, Terraform. Сега съм напълно убеден, че отивам в правилната област на приложение.
Guillaume Gautier - OLEA MEDICAL | Improved diagnosis for life TM
Курс - Kubeflow
Машинен превод