Курс за обучение по Разширено машинно обучение с Python
В това обучение на живо, водено от инструктор, участниците ще научат най-подходящите и авангардни техники за машинно обучение в Python, докато създават поредица от демонстрационни приложения, включващи изображения, музика, текст и финансови данни.
До края на това обучение участниците ще могат:
- Внедрете алгоритми и техники за машинно обучение за решаване на сложни проблеми.
- Прилагайте задълбочено обучение и полуконтролирано обучение към приложения, включващи изображения, музика, текст и финансови данни.
- Разширете Python алгоритмите до техния максимален потенциал.
- Използвайте библиотеки и пакети като NumPy и Theano.
Формат на курса
- Част лекция, част дискусия, упражнения и тежка практическа практика
План на курса
Въведение
Описване на структурата на немаркирани данни
- Без надзор Machine Learning
Разпознаване, групиране и генериране на изображения, видео последователности и данни за улавяне на движение
- Мрежи за дълбоки убеждения (DBNs)
Възстановяване на оригиналните входни данни от повредена (шумна) версия
- Избор и извличане на функции
- Подредени автоматични енкодери за обезшумяване
Анализиране на визуални изображения
- Конволюционен Neural Networks
Получаване на по-добро разбиране на структурата на данните
- Полу-контролирано обучение
Разбиране на текстови данни
- Извличане на текстови функции
Изграждане на високо точни прогнозни модели
- Подобряване на Machine Learning резултати
- Ансамбълни методи
Обобщение и заключение
Изисквания
- Python опит в програмирането
- Разбиране на основните принципи на машинното обучение
Публика
- Разработчици
- анализаторите
- Учени по данни
Отворените курсове за обучение изискват 5+ участника.
Курс за обучение по Разширено машинно обучение с Python - Booking
Курс за обучение по Разширено машинно обучение с Python - Enquiry
Разширено машинно обучение с Python - Консултантско запитване
Консултантско запитване
Отзиви от потребители (1)
In-depth coverage of machine learning topics, particularly neural networks. Demystified a lot of the topic.
Sacha Nandlall
Курс - Python for Advanced Machine Learning
Машинен превод
Предстоящи Курсове
Свързани Kурсове
Усвояване на Stable Diffusion: Deep Learning за генериране на текст-в-изображение
21 часаТова водено от инструктор обучение на живо в България (онлайн или на място) е насочено към специалисти по данни на средно до напреднало ниво, инженери по машинно обучение, изследователи в дълбокото обучение и експерти по компютърно зрение, които желаят да разширят знанията и уменията си в дълбокото обучение за генериране на текст към изображение.
До края на това обучение участниците ще могат:
- Разберете усъвършенствани архитектури за дълбоко обучение и техники за генериране на текст към изображение.
- Внедрете сложни модели и оптимизации за висококачествен синтез на изображения.
- Оптимизирайте производителността и скалируемостта за големи масиви от данни и сложни модели.
- Настройте хиперпараметрите за по-добра производителност и обобщение на модела.
- Интегрирайте Stable Diffusion с други рамки и инструменти за дълбоко обучение
AlphaFold
7 часаТова водено от инструктор обучение на живо в България (онлайн или на място) е насочено към биолози, които искат да разберат как AlphaFold работи и да използват AlphaFold модели като ръководства в своите експериментални изследвания.
До края на това обучение участниците ще могат:
- Разберете основните принципи на AlphaFold.
- Научете как работи AlphaFold.
- Научете как да интерпретирате AlphaFold прогнози и резултати.
Главосновно за вид с Caffe
21 часаCaffe е рамка за дълбоко обучение, създадена с мисъл за изразяване, скорост и модулност.
Този курс изследва приложението на Caffe като рамка за задълбочено обучение за разпознаване на изображения, използвайки MNIST като пример
Публика
Този курс е подходящ за Deep Learning изследователи и инженери, които се интересуват от използването на Caffe като рамка.
След завършване на този курс делегатите ще могат да:
- разбиране на структурата и механизмите за внедряване на Caffe изпълнява задачи по инсталация/производствена среда/архитектура и конфигурация оценява качеството на кода, извършва отстраняване на грешки, мониторинг прилага разширено производство като модели за обучение, прилагане на слоеве и регистриране
Дип Learning Нейронни Мрежи с Chainer
14 часаТова водено от инструктор обучение на живо в България (онлайн или на място) е насочено към изследователи и разработчици, които желаят да използват Chainer за изграждане и обучение на невронни мрежи в Python, като същевременно правят кода лесен за отстраняване на грешки.
До края на това обучение участниците ще могат:
- Настройте необходимата среда за разработка, за да започнете да разработвате модели на невронни мрежи.
- Дефинирайте и внедрявайте модели на невронни мрежи, като използвате разбираем изходен код.
- Изпълнявайте примери и модифицирайте съществуващите алгоритми, за да оптимизирате моделите за обучение на задълбочено обучение, като същевременно използвате GPU за висока производителност.
Използване на Компютърно мрежова инструментална уредба (CNTK)
28 часаComputer Network ToolKit (CNTK) е Microsoft с отворен код, мулти-машина, много-GPU, високоефективна RNN обучителна рамка за машинно обучение за реч, текст и изображения.
Публика
Този курс е насочен към инженери и архитекти, които имат за цел да използват CNTK в своите проекти.
Гълъбемо Учене за Визуализация
21 часаПублика
Този курс е подходящ за Deep Learning изследователи и инженери, които се интересуват от използването на налични инструменти (предимно с отворен код) за анализиране на компютърни изображения
Този курс предоставя работещи примери.
Edge AI с TensorFlow Lite
14 часаТози курс с инструктор, проведен на живо (онлайн или на място), е предназначен за разработчици с средно ниво знания, данъчни научници и практици на изкуствен интелект, които искат да използват TensorFlow Lite за приложения на Edge AI.
Към края на този курс участниците ще могат да:
- Разберат основните принципи на TensorFlow Lite и неговата роля в Edge AI.
- Развиват и оптимизират модели на изкуствен интелект с TensorFlow Lite.
- Разгръщат модели на TensorFlow Lite на различни уреди на края.
- Използват инструменти и техники за преобразуване и оптимизиране на модели.
- Реализират практични приложения на Edge AI с TensorFlow Lite.
Ускоряване на дълбокото обучение с FPGA и OpenVINO
35 часаТова водено от инструктор обучение на живо в България (онлайн или на място) е насочено към специалисти по данни, които желаят да ускорят приложенията за машинно обучение в реално време и да ги внедрят в мащаб.
До края на това обучение участниците ще могат:
- Инсталирайте OpenVINO инструментариума.
- Ускорете приложение за компютърно зрение с помощта на FPGA.
- Изпълнете различни CNN слоеве на FPGA.
- Мащабирайте приложението в множество възли в Kubernetes клъстер.
Разпределени дълбоки обучаващи модели с Horovod
7 часаТова водено от инструктор обучение на живо в България (онлайн или на място) е насочено към разработчици или специалисти по данни, които желаят да използват Horovod за провеждане на разпределени обучения за задълбочено обучение и да го мащабират, за да работят в множество GPU паралелно .
До края на това обучение участниците ще могат:
- Настройте необходимата среда за разработка, за да започнете да провеждате обучения за дълбоко обучение.
- Инсталирайте и конфигурирайте Horovod за обучение на модели с TensorFlow, Keras, PyTorch и Apache MXNet.
- Мащабирайте обучението за дълбоко обучение с Horovod, за да работите на множество GPU.
Deep Learning with Keras
21 часаТова водено от инструктор обучение на живо в България (онлайн или на място) е насочено към технически лица, които желаят да приложат модел на дълбоко обучение към приложения за разпознаване на изображения.
До края на това обучение участниците ще могат:
- Инсталирайте и конфигурирайте Keras.
- Бързо прототипирайте модели за дълбоко обучение.
- Реализирайте конволюционна мрежа.
- Внедряване на повтаряща се мрежа.
- Изпълнете модел на задълбочено обучение както на CPU, така и на GPU.
Въведение в Stable Diffusion за генериране на изображения от текст
21 часаТова водено от инструктор обучение на живо (онлайн или на място) е насочено към специалисти по данни, инженери по машинно обучение и изследователи на компютърно зрение, които желаят да използват Stable Diffusion за генериране на висококачествени изображения за различни случаи на употреба.
До края на това обучение участниците ще могат:
- Разберете принципите на Stable Diffusion и как работи за генериране на изображения.
- Изградете и обучете Stable Diffusion модели за задачи за генериране на изображения.
- Приложете Stable Diffusion към различни сценарии за генериране на изображения, като вписване, изрисуване и превод от изображение към изображение.
- Оптимизирайте производителността и стабилността на Stable Diffusion модели.
TensorFlow Lite за Микроконтролери
21 часаТова водено от инструктор обучение на живо в България (онлайн или на място) е насочено към инженери, които желаят да пишат, зареждат и изпълняват модели за машинно обучение на много малки вградени устройства.
До края на това обучение участниците ще могат:
- Инсталирайте TensorFlow Lite.
- Заредете модели за машинно обучение на вградено устройство, за да му позволите да открива реч, да класифицира изображения и т.н.
- Добавете AI към хардуерни устройства, без да разчитате на мрежова свързаност.
Дипломирано обучение с TensorFlow
21 часаTensorFlow е API от 2-ро поколение на софтуерната библиотека с отворен код Google за дълбоко обучение. Системата е предназначена да улесни изследванията в машинното обучение и да направи бърз и лесен преходът от изследователски прототип към производствена система.
Публика
Този курс е предназначен за инженери, които искат да използват TensorFlow за своите проекти за задълбочено обучение
След завършване на този курс делегатите ще:
- разбират структурата и механизмите за внедряване на TensorFlow да могат да изпълняват задачи и конфигуриране на инсталация/производствена среда/архитектура да могат да оценяват качеството на кода, да извършват отстраняване на грешки, мониторинг да могат да прилагат разширено производство като модели за обучение, изграждане на графики и регистриране
TensorFlow за разпознаване на изображения
28 часаТози курс изследва, с конкретни примери, приложението на Tensor Flow за целите на разпознаването на изображения
Публика
Този курс е предназначен за инженери, които искат да използват TensorFlow за целите на разпознаването на изображения
След завършване на този курс делегатите ще могат да:
- разбиране на структурата и механизмите за внедряване на TensorFlow изпълнява задачи по инсталация/производствена среда/архитектура и конфигурация оценява качеството на кода, извършва отстраняване на грешки, мониторинг прилага разширено производство като модели за обучение, изграждане на графики и регистриране
Процесиране на естествени езици (NLP) с TensorFlow
35 часаTensorFlow™ е софтуерна библиотека с отворен код за цифрови изчисления, използвайки графики за потока на данни.
SyntaxNet е рамка за обработка на естествени езици с невронна мрежа за TensorFlow.
Word2Vec се използва за изучаване на векторни представи на думи, наречени "word embeddings". Word2vec е специално изчислително-ефективна предсказуема модел за изучаване на въвеждането на думи от суров текст. Той идва в два вкуса, моделът Continuous Bag-of-Words (CBOW) и моделът Skip-Gram (глави 3.1 и 3.2 в Mikolov et al.)
Използвани в тандем, SyntaxNet и Word2Vec позволяват на потребителите да генерират модели за учене от естествения език.
публиката
Този курс е насочен към разработчици и инженери, които възнамеряват да работят с SyntaxNet и Word2Vec модели в техните TensorFlow графики.
След завършване на този курс делегатите ще:
- Разбиране на структурата и механизмите за разпространение на TensorFlow’
- да може да изпълнява монтаж / производствена среда / архитектурни задачи и конфигурация
- да могат да оценяват качеството на кода, да извършват дебютиране, мониторинг
- да могат да прилагат напреднали производствени модели като модели за обучение, термини за вграждане, графика за строителство и записване